Field error correction and warm measurements in HQ

F. Borgnolutti, D. Cheng, G. Chlachidze, J. DiMarco, H. Felice, T. Lipton, M. Marchevsky, G. Sabbi, X. Wang

LARP-Hi-Lumi LHC Collaboration Meeting Brookhaven National Laboratory, 7 May 2014

HQ as a test bed for field error correction

- HQ02 is the latest data point to project QXF performance
- Good field quality observed in HQ02 but a few open issues are also identified
 - Geometric errors along the straight section with a systematic variation
 - Large persistent-current effect around injection level (108/127 conductor)

DiMarco et al., IEEE TASC, 4003905, 2014

- Techniques are available to correct these effects
- Use HQ02/3 to verify correction scheme performance for implementation in QXF
- Shim implementation and warm (room temperature) measurements in HQ02b

Geometric errors and correction

- Magnetic shims away from the aperture to compensate field errors at nominal level
 - Tunable permeability to compensate low-order errors
- Successful cases for RHIC [Gupta et al., IEEE MAG, 1996, p. 2069] and HGQ (MQXB model)
 [Sabbi et al., IEEE TASC, 2000, p. 123] and plans for QXF [Hagen, WP3 report MS36]
- Good warm-cold correlation a necessary condition for warm installation
 - True for HQ02a (and same expected for HQ03)
- Use warm measurements to determine the required shimming implementation

DiMarco et al., IEEE TASC, 4003905, 2014

Test implementation in HQ02b

- Verify the mechanical compatibility with magnet (easy installation, well constrained during operation)
- One shim was fabricated (brass + lowcarbon steel)
- Inserted in the bladder slot covering the entire magnet length
- *No negative impact* on magnet performance during the cold test
- Calculation shows negligible effect below 2kA
- High-accuracy measurements and computation are critical to guide implementation
- Correction capability of a few units (b3/a3, b4/a4)
- Full shims are planned to be implemented in HQ03 as a first test

Persistent-current effect correction

- Magnetic shims inside the aperture to
 - Compensate the persistent-current effect at low field
 - Saturate and become transparent at nominal level
 - Proposed and successfully tested in FNAL Nb₃Sn dipole HFDA02 [Kashikhin *et al.*, IEEE TASC, 2003, p. 1270]
- With uniform conductor property, persistent currents affect allowed harmonics due to the symmetry
 - Shim properties must satisfy the same symmetry
- Implementation in HQ02b to study the shim fabrication and installation
 - 8 shims mounted on a tube fixed inside the magnet aperture
 - Shim parameters designed to reduce the peak b₆ at 1250 A as observed in HQ02a

Main parameters

- Magnetic property: permeability (low-carbon steel 1010)
- Geometric properties: radius (tube/beam pipe OD), angular position, width, thickness

Item	Nominal	Tolerance
Radius (r)	46.36 mm	± 0.1 mm
Angle (α)	25.3 deg	\pm 0.1 deg (\pm 80 μ m)
Width (w)	1.59 mm	$\pm 0.1 \text{ mm}$
Thickness (t)	0.46 mm	$\pm 0.02 \text{ mm}$
Tilt (β)	90.0 deg	\pm 0.5 deg (\pm 10 μ m)

- Tolerance levels were estimated for the first HQ02b implementation and can be improved further for next round of implementations
- The impact of shim geometric tolerances on field quality was evaluated

Example expected shim effects for HQ

• Significant reduction of b₆ variation around injection level. Peak value reduces from -30 units to 5 units

1250 A	Before	After			
1230 A	correction				
b_6	-32	5.8			
b_{10}	1.4	-1.8			
b_{14}	0	-21.9			
b_{18}	0	9.3			
b_{22}	0	6.9			
b_{26}	0	-5.1			
b ₃₀	0	-1.6			

 $R_{ref} = 40 \text{ mm}$

- Higher-order terms appear at low field but negligible at nominal level
- Based on initial AP feedback, final scheme may require additional shims to avoid higher-order effects

Impact of shim geometric tolerances

- Consider the same variation for all shims, only allowed terms are affected
- $R_{ref} = 40 \text{ mm} (1/3 \text{ magnet aperture})$

- The actual shim is 0.8 mm wider than the design value due to the tooling issue
- Still useful for warm measurements

 Δb_n given here are for positive variation

Parameter	Nominal	Variation range	Δb_6	Δb_{10}	Δb_{14}	Δb_{18}
W	2.38 mm	± 100 μm	5.3	0.9	-3.8	0.5
t	0.46 mm	$\pm 20 \mu m$	1.2	-0.7	-0.5	0.5
r	46.36 mm	$\pm 100 \mu m$	-1.0	-0.1	1.6	-0.5
α	25.3 deg	$\pm 80 \ \mu m \ (\pm 0.1 \ deg)$	-0.1	-1.4	0.4	1.1
β	90.0 deg	$\pm 10 \ \mu m \ (\pm 0.5 \ deg)$	-0.8	0.3	0.5	-0.3

- Harmonics are most sensitive to shim width and thickness
- Tighter tolerance can be achieved and hence smaller impact on the harmonics

Impact of shim displacement (2D cases)

Translation

• Sensitivity [unit/mm] for translation within ± 0.2 mm

Rotation

• Sensitivity [unit/degree] for rotation within ± 1 degree

$$+\Delta \alpha$$
 Δa_{6} Δa_{10} Δa_{14} Δa_{18} -10.2 2.1 13.5 -5.4

- Negligible impacts on allowed terms
- Same sensitivities apply with combined displacement modes

Force on the shims

- Analysis of the forces on magnetic shims to evaluate their mechanical stability
- Identical and symmetric shims assumed
 - Zero net force on the shims
 - One octant is considered

- Radial force scales with current, 350 N/m at short-sample limit (150 kPa). Dovetail groove and epoxy bonding is applied to counteract the radial force
- Negligible azimuthal force

Longitudinal shim location

- Each shim is 200 mm long and cover partially the magnetic 'straight' section with minimum impacts from layer ramp and coil ends
 - Comparison of harmonics inside and outside the shim coverage
 - Probe length is 100 mm. An integrated effect is available when the probe is partially covered by the shim

Persistent-current shims fabrication

Dovetail groove and shim test fit

Sealed with epoxy

Machine the grooves on a G10 tube

Integration into the magnet aperture

Warm measurements of HQ02b

- HQ02b was used as a first test bed to study the shim fabrication, installation and compatibility with magnet cold operation
- Warm measurements are indispensable to define the geometric field errors and guide the correction scheme implementation
- Shims were installed after the adjustment of magnet pre-load
- Warm scan of HQ02b using a new FNAL measurement system to
 - Prepare for future warm measurements after magnet assembly
 - Verify the measurement system performance
 - Validate the shim analysis/computation
- Measurement protocol and data reduction
 - Warm scan along the bore, +/- 20 A to remove remnant field effects
 - 100 measurements at each step for better statistics
 - Scans before and after applying the shims
 - Measured data has centering and feed-down correction

FERmilab Rotating-coil Encapsulated Tesla-probe (FERRET) system

XY accelerometers

slip-rings

encoder

bearing block

64 mm OD Ferret (HQ02 meas.)

- Radius of outermost PCB trace: 29.5mm
- Overall length 0.8m
- 2 PCB probes: each 100mm long, with 16 turns * 10 layer sense coil. Analog bucking of dipole and quad with buck ratios > 1000.
- Total 7 channels: 3 probe signals (UB, DB, DQB), encoder index, encoder Apulse (500 counts/rev), and X/Y accelerometers
- Rotation speed 3 Hz

non-magnetic (phosphor-bronze) flex drive (to external DC motor):

45mm ferret (disassembled to show internal components)

HQ02b Warm Measurements Set-up

Felea

Ferret at HQ02b lead end

Signal cable and positioning tape

Additional tests were performed to understand magnet/probe coordinate system – here a steel rod is attached to the ferret outer tube to confirm signal polarity and start angle

Ferret at HQ02b return end Guide rails

Flexible drive shaft

to support probe

HQ02b resolution w/ Ferret in the vicinity of the shim

~0.05 unit resolution

Probe resolution

HQ02a measured at FNAL VMTF, 10A with 47mm dia. probe

~0.05 unit resolution

HQ02b measured at LBL, 20A with Ferret system (probe dia. 59mm)

~0.005 unit resolution

In shim region, spurious harmonics may be larger from vibration effects owing to larger non-fundamental harmonics

Measurement Results w/ and w/o shims – b_n

Measurement Results w/ and w/o shims – a_n

Summary of HQ02b Harmonics Change in Shim Region

Allowed terms agree with computation

- Red bars are lower and upper bounds of the expected harmonics considering the uncertainty of the shim width (± 100 μm)
- Probe resolution sufficient to detect high-order terms

LARP

Observed a₅ and a₁₃ attributed to off-centered tube

- Assuming shims on the tube are uniform and symmetric
- $\Delta y = -500 \, \mu m$ can explain the measured a_5
- This gives -8.4 units of a_{13} , 20% lower than the measurements

Tube rotation caused a₆ and a₁₄

- The measured a_6 suggests a rotation of -0.75 degree (clockwise, -600 µm)
- This leads to -10 units of a_{14} , consistent with measurements

- The measured harmonics suggests a the displacement of shim tube
 - Vertical displacement of the tube center for -500 μm
 - Clockwise rotation of the tube for -0.75 degree ($-600 \mu m$)
- In future installations, can use the warm measurements to minimize these offsets

HQ03 field quality study plan

- HQ03 will provide a reference for the field quality that can be achieved for QXF
- Monitor the harmonics during the coil assembly process with warm measurements to understand and perhaps control the origin of systematic variation of low-order harmonics
- Correction scheme implementation based on the experience from HQ02b
 - Implement geometric shims based on at warm measurements and verify during cold test
 - Persistent-current shims will be used and characterized with warm/cold measurements

Note: Ideally, we need two cold tests for field quality study to distinguish between the intrinsic field quality and the ability to correct the field errors

- One cold test before applying the correction scheme to identify the field quality baseline and establish the warm-cold correlation
- Test after applying the correction scheme to verify the performance

Summary

- Correction schemes for HQ geometric and persistent-current field errors are under development
 - One geometric shim and full set of persistent-current shims installed in HQ02b
 - No negative impact observed on HQ02b during the cold test
- FNAL Ferret warm measurement system with high-resolution probes was successfully used for correction scheme implementation and performance was verified
 - Measurements agree well with analysis of expected shim behavior
 - The Ferret system measurements will be used for warm measurements and to guide the geometric shim installation
- The HQ03 measurement plan can incorporate various field quality corrections. The goals and guidelines for these tests are open for discussion.